Coursera – Machine Learning (Stanford University)

Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you’ll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you’ll learn about some of Silicon Valley’s best practices in innovation as it pertains to machine learning and AI.

This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you’ll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.

Welcome to Machine Learning! In this module, we introduce the core idea of teaching a computer to learn concepts using data—without being explicitly programmed. The Course Wiki is under construction. Please visit the resources tab for the most complete and up-to-date information.

Linear Regression with One Variable
Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price
prediction, present the notion of a cost function, and introduce the gradient descent method for learning.

Linear Algebra Review
This optional module provides a refresher on linear algebra concepts. Basic understanding of linear algebra is necessary for the rest of the
course, especially as we begin to cover models with multiple variables.

Linear Regression with Multiple Variables
What if your input has more than one value? In this module, we show how linear regression can be extended to accommodate multiple input
features. We also discuss best practices for implementing linear regression.

DOWNLOAD THIS VIDEO TRAINING 1.48GB

 

DISCLAIMER

This website strictly complies with DMCA Digital Copyright Laws.. Please be clear that we (edownloads.me) do not own copyrights of these e-books. The intention behind sharing these books and educational material is to provide easy access to students, researchers and other readers who don't have access to these books at their local libraries, "thus only for educational purpose". We highly encourage our readers to purchase this content from the respected publishers. If anyone holding copyrights wants us to remove this content, please contact us rightaway. All books and educational material on edownloads.me are free and NOT HOSTED ON OUR WEBSITE. If you feel that your copyrights have been violated, then please contact us immediately. You may send an email to infomanzastore@gmail.com for all DMCA / Removal Requests. edownloads.me doesn’t have any material hosted on the server of this page, only links to books that are taken from other sites on the web are published and these links are unrelated to the book server. edownloads.me server doesnot store any type of book or material. No illegal copies are made or any copyright © and / or copyright is damaged or infringed since all material is free on the internet.

Add a Comment