Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications.
This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications:
* Spatial and spatio-temporal models for continuous outcomes
* Analysis of spatial and spatio-temporal point patterns
* Coregionalization spatial and spatio-temporal models
* Measurement error spatial models
* Modeling preferential sampling
* Spatial and spatio-temporal models with physical barriers
* Survival analysis with spatial effects
* Dynamic space-time regression
* Spatial and spatio-temporal models for extremes
* Hurdle models with spatial effects
* Penalized Complexity priors for spatial models
DOWNLOAD THIS BOOK